

Journal of Nuclear Materials 247 (1997) 90-93

Thermal expansion of neptunium-uranium mixed oxides

Toshiyuki Yamashita ^{a,*}, Noriko Nitani ^a, Toshihide Tsuji ^b, Tetsuya Kato ^b

^a Department of Chemistry and Fuel Research, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11, Japan ^b Department of Nuclear Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan

Abstract

Thermal expansions of Np_yU_{1-y}O₂ solid solutions were investigated between room temperature and 1273 K by a high temperature X-ray diffraction technique. The lattice parameters of Np_yU_{1-y}O₂ solid solutions at high temperatures were given in polynomial expressions of temperature. High temperature heat capacities, C_p , of Np_yU_{1-y}O₂ solid solutions were estimated from the thermodynamic relation using the measured thermal expansions and literature data. The estimated errors in the calculated C_p of UO₂ were less than $\pm 5\%$. © 1997 Elsevier Science B.V.

1. Introduction

During the burn-up of nuclear fuels, long-lived lighter actinides (Np, Am and Cm) are accumulated in the fuel; neptunium thus produced amounts to about 60% of these elements. It is necessary to understand the fundamental thermodynamic properties of neptunium-uranium mixed oxides, in order to clarify the behavior of Np in the fuel and/or to develop new fuels containing lighter actinides. Little is, however, known about basic thermodynamic properties of these mixed oxides. The authors have established the phase diagram of the ternary $UO_2-U_3O_8-NpO_2$ system where a wide and homogeneous solid solution phase of (Np, U)O_{2+x} exists in the range of UO₂-U₄O₉-U_{0.4}Np_{0.6}O_{2.27}-NpO₂ [1]. It was also found that lattice parameters of the (Np, U)O₂ solid solutions at room temperature decreased linearly with Np content from 547.04 pm for UO₂ to 543.36 pm for NpO₂, indicating that the $(Np, U)O_2$ solid solutions were almost ideal.

In the present study, thermal expansions of (Np, U)O₂ solid solutions have been measured by means of high temperature powder X-ray diffraction. An attempt was made to estimate specific heat capacities of these solid solutions from the measured linear thermal expansion coefficients using the thermodynamic relation, $C_p = \beta V / \kappa_a \gamma$, where C_p is the specific heat capacity at constant pressure,

 β is the coefficient of isobaric volumetric expansion, V is the molar volume, κ_a is the adiabatic compressibility and γ is the Grüneisen constant.

2. Experimental details

2.1. Materials

Uranium dioxide was prepared by reducing U_3O_8 in a stream of purified hydrogen gas at 1273 K for 10 h. The U_3O_8 was prepared by oxidizing high purity uranium metal blocks with metallic impurities of less than 20 ppm [2] in air at about 1000 K. Neptunium dioxide powder was provided from Fontenay auch Roses, France. The main impurities were Na(50 ppm), Si(50 ppm) and Fe(200 ppm). The NpO₂ powder was heated in air at 1273 K before use.

The weighed amounts of NpO_2 and UO_2 powders were thoroughly mixed and pressed into pellets. These pellets were heated at 1700 K in vacuum. Products were ground in an agate mortar and were subjected to X-ray diffraction analyses. Heating and grinding processes were repeated several times until a sharp X-ray diffraction pattern from a single phase solid solution was obtained.

2.2. X-ray diffraction study

High temperature X-ray diffraction study was carried out using a Rigaku RAD-3C diffractometer system attached a furnace unit. Furnace temperature was measured

^{*} Corresponding author. Tel.: +81-29 282 5496; fax: +81-29 282 5935; e-mail: yamasita@analchem.tokai.jaeri.go.jp.

by an R-type (Pt/Pt 13% Rh) thermocouple and was controlled by a PID-type temperature controller within ± 1 K during X-ray measurements. Sample temperature was determined by the lattice parameter of the Pt sample holder and the thermal expansion data of platinum [3]. The estimated error in temperature was ± 10 K, most of which came from uncertainties in determination of the lattice parameter of platinum.

Each specimen was annealed first at 1273 K in He–8 vol.% H_2 atmosphere for 2 h in order to recover any lattice distortions in crystallites by self-radiation damage, before X-ray measurements were made. Then the furnace temperature was lowered by 50 or 100 K and kept at that temperature for 1 h and the X-ray measurements were carried out in an atmosphere of He–8 vol.% H_2 at high temperatures to ensure that the specimen was at the stoichiometric composition. The peak positions of X-ray diffraction taken at room temperature before and after heating were almost identical for all specimens.

Lattice parameters were calculated from all reflections $(20^{\circ} < 2\theta < 145^{\circ})$ employing the least-squares method for the Nelson-Riley extrapolation. The estimated standard errors of the calculated lattice parameters were within ± 0.02 pm.

3. Results and discussion

3.1. Thermal expansion

Lattice parameters of $Np_yU_{1-y}O_2$ solid solutions are plotted against temperature in Fig. 1, together with those of NpO₂ and UO₂. Lattice parameters of every specimen increase smoothly with temperature to about 1300 K,

Fig. 1. Thermal expansion of Np_yU_{1-y}O₂ solid solutions plotted as the lattice parameter versus temperature. (\bigcirc) UO₂, (\square) y =0.1, (\triangle) y = 0.3, (\diamondsuit) y = 0.5, (\bigtriangledown) y = 0.7 and (\odot) NpO₂.

Table 1								
Regression	data	for	Np,	U_{1-1}	$_{v}O_{2}$	solid	solution	s

y value	<i>b</i> ₀ (pm)	$\frac{b_1}{(\times 10^3)}$	b_2 (×10 ⁶)i	b_3 (×10 ¹⁰)	a ₂₉₈ (pm)	ESD
0.0	545.567	4.581	1.036	-2.736	547.02	0.041
0.1	545.203	4.193	1.382	-3.872	546.67	0.017
0.3	544.396	3.878	1.615	-4.365	545.68	0.013
0.5	543.903	3.468	2.111	-6.028	545.11	0.014
0.7	543.245	3.462	2.063	- 5.925	544.45	0.015
1.0	542.032	4.276	0.9075	-1.362	543.38	0.028

 $a_T \text{ (pm)} = b_0 + b_1 T + b_2 T^2 + b_3 T^3$

indicating that no phase transitions nor any other orderings occur in the temperature range investigated. Measured lattice parameters were fitted as a commonly used function of temperature in the form of $a_T = b_0 + b_1T + b_2T^2 + b_3T^3$ where a_T is the lattice parameter at temperature T (K). The regression results are listed in Table 1. The standard deviations of the regression (ESD) are shown in the last column.

Values of linear thermal expansion (LTE) at temperature T were calculated by the relation

 $LTE(T) / \% = (a_T - a_{298}) \times 100 / a_{298},$

where a_T and a_{298} were the lattice parameters at temperature T and 298 K, respectively. The a_{298} values are listed in Table 1. Calculated results are plotted against temperature in Fig. 2. The LTE(T) values of UO₂ and NpO₂ obtained in the present study showed close agreements with the recommended literature values [4,5] within

Fig. 2. Percent linear thermal expansion of $Np_yU_{1-y}O_2$ solid solutions plotted against temperature. (-----) UO_2 , (···) y = 0.1, (---) y = 0.3, (-·-) y = 0.5, (-··-) y = 0.7 and (---) NpO_2 .

 $\pm 0.02\%$. More detailed comparison and discussion of the LTE(*T*) for actinide dioxides will be given in our another paper [6]. As can be seen from the figure, the LTE(*T*) values of Np_yU_{1-y}O₂ solid solutions lie between those of UO₂ and NpO₂ and decrease with Np content: 1.034 for UO₂, 1.020 for 10%Np-UO₂, 1.018 for 50%Np-UO₂, 1.008 for 70%Np-UO₂ and 1.001 for NpO₂ at 1300 K.

3.2. Estimation of specific heat capacity at constant pressure

Although many data are available for specific heat capacities at constant pressure (C_p) of UO₂, only a few data have been reported for NpO₂ and none for (Np, U)O₂ solid solutions. Westrum et al. [7] measured C_p of NpO₂ at low temperatures in an adiabatic calorimeter and reported that the C_p value at 298 K was 66.22 J K⁻¹ mol⁻¹. Arkhipov et al. [8] measured enthalpies of NpO₂ by drop calorimetry in the temperature range of 350 to 1100 K and reported that the C_p value at 298 K was 80.00 J K⁻¹ mol⁻¹, which was larger than that obtained by Westrum et al. by about 14 J K⁻¹ mol⁻¹. It is, therefore, worthwhile to estimate C_p of NpO₂ and (Np, U)O₂ solid solutions from the measured thermal expansion data of these compounds.

Specific heat capacity, C_p , can be derived from the thermodynamic relation, $C_p/J \ K^{-1} \ \text{mol}^{-1} = \beta V/\kappa_a \gamma$, where β is the coefficient of isobaric volumetric expansion, κ_a the adiabatic compressibility and γ the Grüneisen constant. The relation $\beta = 3\alpha$ is good for an isotropic cubic material, where α is the linear thermal expansion coefficient.

In order to check the validity of C_{p} estimation from the thermal expansion data, C_p values of UO₂ were calculated. The adiabatic compressibility for UO_2 was calculated from the relation $\kappa_a = 3(1 - 2\sigma)/E_a$ where E_a is the adiabatic Young's modulus and σ is Poisson's ratio. From the literature values of $E_a = 2.28 \times 10^{11}$ Pa [9] and $\sigma = 0.317$ [10], $\kappa_a = 4.82 \times 10^{-12}$ Pa⁻¹ was obtained. Momin and Karkhanavala [11] estimated Grüneisen constant, γ , for UO₂ and gave $\gamma = 1.9 \pm 0.1$ as an average value. For the calculation of the $C_{\rm p}$ value, $\kappa_{\rm a}$ and γ values were assumed to be independent of temperature, since no reliable data were available at higher temperatures. The linear thermal expansion coefficient at temperature T, $\alpha(T)$, was obtained by differentiating the expansion curve a_T with T: $\alpha_T = (1/a_{298})(\partial a_T/\partial T)$. Because α_T strongly depends on the functional form of a_T to which observed lattice parameters were fitted, three equation forms were tested:

$$a_T = b_0 + b_1 T + b_2 T^2 + b_3 T^3, \tag{1}$$

$$a_T = b_0 + b_1 T + b_2 T^2, \tag{2}$$

$$a_T = b_0 + b_1 T + b_2 T^2 + b_3 / T.$$
(3)

Fig. 3. Estimated specific heat capacities of UO_2 plotted against temperature. (\triangle) Eq. (1), (\bigtriangledown) Eq. (2), (\blacklozenge) Eq. (3), (\Box) Moore and Kelley [12] and (\bigcirc) Fredrickson and Chasanov [13].

The standard fitting errors of these three equations were almost identical: 0.040 for Eq. (1), 0.043 for Eq. (2) and 0.041 for Eq. (3).

Calculated C_p values for UO₂ are plotted against temperature in Fig. 3 together with literature data [12,13] for comparison. As seen from Fig. 3, the temperature dependence of C_p is best represented by Eq. (3), although the estimated values are higher than those of the literature values by about 4 J K⁻¹ mol⁻¹ at high temperatures. The errors in calculated C_p were estimated to be less than $\pm 3\%$ against the data of Moore and Kelley [12] and less than $\pm 5\%$ against more recent values of Fredrickson and Chasanov [13]. It should be noted here that C_p at 298 K by Eq. (3) is calculated to be 63.52 J K⁻¹ mol⁻¹ which is very close to the commonly accepted value of 63.60 J K⁻¹ mol⁻¹ [14]. Therefore, Eq. (3) can be employed in the following C_p calculations of (Np, U)O₂ solid solutions.

No data of γ and κ_a for NpO₂ and (Np, U)O₂ solid solutions were available. Then, γ values for NpO₂ and (Np, U)O₂ solid solutions were assumed to be the same as that of UO₂, i.e., $\gamma = 1.9$. κ_a for NpO₂ was calculated from the relation $\kappa_a = 3\alpha V/\gamma C_p$ using the measured α and V values and the reported C_p value of 66.22 J K⁻¹ mol⁻¹ at 298 K [7]. Although another C_p value of 80.00 J K⁻¹ mol⁻¹ for NpO₂ at 298 K was reported by Arkhipov et al. [8], this value is apparently higher than those of the other actinide dioxides, 61.7 J K⁻¹ mol⁻¹ for ThO₂ [15], 63.06 J K⁻¹ mol⁻¹ for UO₂ [14] and 68.6 J K⁻¹ mol⁻¹ for PuO₂ [16]. The adiabatic compressibility for Np_yU_{1-y}O₂ solid solutions $\kappa_a(ss) = \kappa_a(UO_2)(1-y) + \kappa_a(NpO_2)y$ where $\kappa_a(UO_2)$ and $\kappa_a(NpO_2)$ were the adiabatic compressibility of UO₂ and NpO₂, respectively.

Calculated C_p values for NpO₂ and Np_yU_{1-y}O₂ solid solutions are plotted against temperature in Fig. 4. Litera-

Fig. 4. Estimated specific heat capacities of NpO₂ and Np_yU_{1-y}O₂ solid solutions plotted against temperature. (\Box) y = 0.1, (\triangle) y = 0.3, (\diamondsuit) y = 0.5, (∇) y = 0.7, (+) NpO₂, (\bigcirc) UO₂ by Moore and Kelley [12] and (\bigcirc) NpO₂ by Arkhipov et al. [8].

ture values of UO₂ [12] and NpO₂ [8] are also shown in the figure for comparison. As seen from Fig. 4, all of the calculated C_p curves are located between the literature data of UO₂ and NpO₂ and show nearly the same values and temperature dependence as that of the literature UO₂. The temperature dependence of calculated C_p values of NpO₂ seems to be consistent with that of measured ones [8], but the former absolute values are lower than the latter ones, probably reflecting the fact that the C_p value at 298 K measured by Westrum et al. [7] is lower than that obtained by Arkhipov et al. [8]. Because of the lack of reliable κ_a and γ values, the accuracy of the estimated C_p for Np_yU_{1-y}O₂ solid solutions was not evaluated for the moment.

The estimation of C_p from thermal expansion data has a great advantage when samples are radioactive and toxic materials and a gram-order amount of sample is not available. About a gram-order amount of sample is required for the usual heat capacity measurements, whereas only some milligram amount is sufficient for the present X-ray diffraction study. More reliable thermo-physical data such as adiabatic compressibility, adiabatic Young's modulus, Poisson's ratio and the Grüneisen constant are required for these actinide compounds in order to improve the accuracy of the estimated C_p from thermal expansion data.

References

- T. Yamashita, N. Nitani, K. Ohuchi, T. Muromura, T. Tsuji, H. Inagaki, T. Kato, J. Alloys Compounds 213&214 (1994) 375.
- [2] H. Hashitani, A. Hoshino, T. Adachi, Japan Atomic Energy Research Institute Report JAERI-M-5343, 1973.
- [3] J.A. Brand, H.J. Goldschmidt, J. Sci. Instrum. 33 (1956) 41.
- [4] Y.S. Touloukian, ed., Thermophysical Properties of Matter, Vol.13 (IFI/Plenum, New York, 1977).
- [5] D. Taylor, Br. Ceram. Trans. J. 83 (1984) 32.
- [6] T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, submitted to J. Nucl. Mater.
- [7] E.F. Westrum Jr., J.B. Hatcher, D.W. Osborne, J. Chem. Phys. 21 (1953) 419.
- [8] V.A. Arkhipov, É.A. Gutina, V.N. Dobretsov, V.A. Ustinov, Radiokhimiya 16 (1974) 123.
- [9] J.B. Wachtman Jr., M.L. Wheat, H.J. anderson, J.L. Bates, J. Nucl. Mater. 16 (1965) 39.
- [10] A. Padel, C. De Novion, J. Nucl. Mater. 33 (1969) 40.
- [11] A.C. Momin, M.D. Karkhanavala, High Temp. Sci. 10 (1978) 45.
- [12] G. E Moore, K.K. Kelley, J. Am. Chem. Soc. 69 (1947) 2105.
- [13] D.R. Fredrickson, M.G. Chasanov, J. Chem. Thermodyn. 2 (1970) 623.
- [14] J.J. Huntzicker, E.F. Westrum Jr., J. Chem. Thermodyn. 3 (1971) 61.
- [15] D.W. Osborne, E.F. Westrum, J. Chem. Phys. 21 (1953) 1884.
- [16] T.A. Sandenaw, J. Nucl. Mater. 10 (1963) 165.